GMR biosensor arrays: a system perspective.
نویسندگان
چکیده
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time.
منابع مشابه
Ultrasensitive Magnetic Nanoparticle Detector for Biosensor Applications
Ta/Ru/Co/Ru/Co/Cu/Co/Ni80Fe20/Ta spin-valve giant magnetoresistive (GMR) multilayers were deposited using UHV magnetron sputtering and optimized to achieve a 13% GMR ratio before patterning. The GMR multilayer was patterned into 12 sensor arrays using a combination of e-beam and optical lithographies. Arrays were constructed with 400 nm × 400 nm and 400 nm × 200 nm sensors for the detection of ...
متن کاملUltra-sensitive immunoassay using VCSEL detection system - Electronics Letters
Introduction: Protein-protein interaction is one of the most important subjects in molecular biology [1]. Bioassays have been developed to detect and quantify the biomolecular interactions with high sensitivity. There are two general categories of techniques: labelling with compounds and direct molecule identification. Label-free biosensor technologies are among the latter, which are desirable ...
متن کاملMagnetic detection of mercuric ion using giant magnetoresistance-based biosensing system.
We have demonstrated a novel sensing strategy employing a giant magnetoresistance (GMR) biosensor and DNA chemistry for the detection of mercuric ion (Hg(2+)). This assay takes advantages of high sensitivity and real-time signal readout of GMR biosensor and high selectivity of thymine-thymine (T-T) pair for Hg(2+). The assay has a detection limit of 10 nM in both buffer and natural water, which...
متن کاملGiant Magnetoresistance-based Biosensor for Detection of Influenza A Virus
We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Bind...
متن کاملEddy-current Testing with Gmr Magnetic Sensor Arrays
The advent of GMR magnetic sensors and GMR sensor arrays with frequencyindependent sensitivity offers improvements in speed, depth, and resolution in eddy-current testing. Arrays of GMR magnetic sensors allow rapid scanning of an area for defects in a single pass. The small size and low power consumption of these solid-state magnetic sensors enable the fabrication of compact arrays of sensors o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2010